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Mass Density of Dp-branes
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It is shown that the generally covariant definition of mass equals the ADM mass
for Dp-branes.

As dynamical objects, Dp-branes play an important role in the study of
dualities in string theories [1,2]. The bosonic sector of the actions in the
effective low-energy theory for 10-dimensional type II strings and 11-dimen-
sional supergravity is of the general form
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The p-brane solutions are those for (1) which possess (Poincaré)d ^ SO(D
2 d ) symmetry, d 5 p 1 1. Let the spacetime coordinates be split into two
ranges: xM 5 (xm, ym), where xm (m 5 0, 1, . . . , p) are coordinates adapted
to the (Poincaré)d isometries on the worldvolume and where ym (m 5 d, . . . ,
D 2 1) are the coordinates transverse to the worldvolume. The Ansatz for
the spacetime metric is

ds2 5 e2A(r) dxm dxn hmn 1 e2B(r) dym dyn dmn (2)

where r 5 !ymym is the isotropic radial coordinate in the transverse space.
The desired symmetry (Poincaré)d ^ SO(D 2 d ) is guaranteed, as is obvious.
A notable feature of the classical p-branes with appropriate electric or mag-
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netic Ansatz is that the are BPS saturated, in the sense that their ADM
mass equals the charge involved. This is very similar to the usual extreme
Reissner–Nordstrom solution, which can be called a 0-brane [3], in general
relativity. Since the the BPS saturated states are characterized by the fact that
they preserve some of the full supersymmetries and the energy-momentum Pa

involved in the supersymmetric algebra should have a coordinate-independent
definition, while the ADM mass definition is not covariant, it is therefore
nontrivial to check the BPS saturation by a covariant definition of energy-
momentum. We have such a definition at hand.

Using the general translation dxm 5 em
a ba in curved spacetime and the

Nöther theorem, a generally covariant definition of energy-momentum in the
vierbein formalism of Einstein general relativity was obtained in ref. 4. The
outline is as follows. Suppose that the spacetime is of dimension D and the
Lagrangian is in the first-order formalism [m denotes the Riemann indices
and a the tangent indices in Eqs. (3)–(23)]

I 5 #
G

+(fA, ­mfA) d Dx (3)

where fA denotes the generic fields. If the action is invariant under the
infinitesimal transforms

x8m 5 xm 1 dxm, f8A(x8) 5 fA(x) 1 dfA(x) (4)

(it is not required that dfA
­G 5 0; see ref. 5), then the following relation holds:

­m1+dxm 1
­+

­­mfA d0fA2 1 [+]fAd0fA 5 0 (5)

where

[+]fA 5
­+
­fA 2 ­m

­+
­­mfA (6)

and d0fA is the Lie variation of fA,

d0fA 5 f8A(x) 2 fA(x) 5 dfA(x) 2 ­mfAdxm (7)

If + is the total Lagrangian of the system, the field equations of fA is
just [+]fA 5 0. Hence from Eq. (5) we can obtain the conservation equation
corresponding to transforms (4),

­m 1+dxm 1
­+

­­mfA d0fA2 5 0 (8)

It is important to recognize that if + is not the total Lagrangian, e.g., the
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gravitational part +g , then so long as the action of +g remains invariant
under transforms (4), Eq. (5) is still valid, yet Eq. (8) is no longer admissible
because of [+g]fA Þ 0.

Suppose that fA denotes the Riemann tensors fA
m and Riemann scalars

cA; Eq. (5) reads

­m 1+gdxm 1
­+g
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n
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n2 1 [+g]fA

md0fA
m 5 0 (9)

Under transforms (4), the Lie variations are

d0fA
n 5 2dxa

,nfA
a 2 fA

n,adxa (10)

where the dot comma denotes partial derivative. So Eq. (9) reads

­mF+gdxm 2
­+g

­­mfA
l

(dxn
,lfA

n 1 fA
l,ndxn)G

2 [+g]fA
l(dxn

,lfA
n 1 fA

l,ndxn) 5 0 (11)

Comparing the coefficients of dxn, dxn
,l, and dxn

,ml, we obtain
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Then Eq. (11) can be written as
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By definition, we introduce
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Then Eq. (14) gives

­m(Ĩm
ndxn 1 Ṽlm

n dxn
,l) 5 0 (17)

So, by comparing the coefficients of dxn, dxn
,m, and dxn

,ml, we have the following
from Eq. (15):
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­mĨm
n 5 0 (18)

Ĩl
n 5 2­mṼlm

n , Ṽml
n 5 2Ṽlm

n (19)

Now suppose that dxm 5 ejm(x), with e an infinitesiaml constant parameter,
and jm(x) an arbitrary vector. Then it follows from Eqs. (17)–(19) that

­m j̃m(j) 5 0 (20)

where

j̃m(j) 5 ­nṼ nm (21)

and

Ṽ nm 5 Ṽ nm
a ja (22)

Accordingly, we have the conserved charge associated with j,

Q[j] 5 #
S

j̃ 0 d 2x 5 #
­S

Ṽ i0eij dxj (23)

If we choose jm 5 em
a ea, ea 5 const, we can obtain the energy-momentum.This

definition has a number of advantages over noncovariant ones such as the
definitions of Landau and Einstein, etc. [6]. Applying this definition to the
N 5 1 self-dual supergravity, the correct superalgebra is restored [7].

For the action (1), the conservation law reads (we adopt the same
convention for indices as in ref. 1)
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where TM
M 1 tM

M is the total energy-momentum tensor and the conservative
total energy (mass) is

E 5 # (T 0
0 1 t0

0)!2g d px d D2dy

5 # ¹NV 0N
0 !2g d px d D2dy (26)

5 # ­NṼ0N
0 d px d D2dy

where V̂ 0N
0 5 V 0N

0 !2g, T M
M and tM

M are the energy-momentum current for
matter and gravity, respectively, and vM 5 eRSvRMS. For our purpose, the
vierbein 1-forms for the metric ansatz are [1]
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em 5 eA(r) dxm, em 5 eB(r) dym (27)

and the spin-connection 1-forms are

vmn 5 0, vmn 5 e2B(r)­nA(r)em (28)

vmn 5 e2B(r)­nB(r)em 2 e2B(r)­mB(r)en

Thus we have by direct calculation

vm 5 0, vm 5 2de2B(r)­mA(r) 1 e2B(r)(1 1 d 2 D)­mB(r) (29)

Therefore

V 0m
0 5 2e2(A12B)[(1 2 d )­mA 2 (1 1 d̃)­mB] (30)

where d̃ 5 D 2 d 2 2. For the specific solution
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we have
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Since Ṽ0N
0 depends only on r, Eq. (26) can be written as

E 5 # d px % (33)

where
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where d(D2d21) Sm 5 r d̃ym dV(D2d21). Using limr→` H(r) 5 1, we calculate
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This mass density, i.e., energy/(unit p-volume) agrees with the ADM mass
density exactly.

In this paper, we evaluated the mass density of the general Dp-branes
in string/M-theories. Though for fixed transverse radius r, the p-brane in the
whole D-dimensional space is flat, the reduced mass density on it is not zero.
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